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0 Singular perturbation concepts have been very helpful in control

N and systems theory, both in eliminating difficulties associated with

X stiffness and in reducing dimensionality (cf. Kokotovic et al. (1976)

and O'Malley (1978)). In this short report, we wish to emphasize the

0 second aspect, especially in the context of large-scale problems. Such

R an approach has been applied to power system modeling (cf. Kokotovic

9 et al. (1979)) and to aircraft maneuvering and structural dynamics (cf.

Anderson (1978) and Anderson and Hallauer (1980)).

Let us first consider initial value problems on a bounded interval,

0 < t < T, for linear systems of the form

x = Ax + Bu , (1)

where A and B are constant matrices and the control u(t) is considered,

for simplicity in the present discussion, to be given.

A low-order example is provided by a model of the longitudinal

3 dynamics of an F-8 aircraft (cf. Etkin (1972) and Teneketzis and
C€_

Sandell (1977)). It involves four states x. and one control u, the

elevator deflection. Two of the four states, velocity variation and

flight path angle, are described through physical intuition as being

"primarily (or predominantly) slow" variables compared to the other

Si,"primarily fast" states, angle of attack and pitch rate. It is a

natural temptation in such a situation to seek to approximate the solu-

tion away from t = 0 by neglecting the dynamics of the primarily fast

ariables and to integrate only the resulting initial value problem for

l Ithe slow states. (This has often been proposed in the engineering

literature, cf., e.g., Harvey and Pope (1976)). The trouble with this

I approach is that the physical coordinates are not actually provided

17F7 separately as slow and fast modes, in contrast to the situation for the

i traditional singularly perturbed system i = f(a,S,t), cB = g(a,E,t)

I *, where B can respond on a much faster time-scale than a as E -" 0.

The analytical solution of the linear system.(i) is commonly
'. expressed using variation of parameters and the matrix exponential so-

lution e of the homogeneous system. Moler and van Loan's 1978

- _ *80 721020
Lime --L



article "Nineteen dubious ways to compute the exponential of a matrix"

illustrates the difficulties involved in computationally exploiting

specific representations for this fundamental matrix. The difficulties

are compounded when the dimensions of A are large. We, nonetheless,

recall that the columns of eAt are of the form v. (t)e where v. is a
1 2.

vector polynomial in t in the span of the eigenspace corresponding to

the eigenvalue X. of A. We shall seek an approximation away from t = 01

which avoids doing a complete eigenanalysis of A. Our approximation

will involve neglecting modes corresponding to large stable eigenvalues

of A. This corresponds to the- reduced order model in singular pertur-

bations (cf. O'Malley (1974)) and to the smooth approximate solution of

the stiff equations literature (cf. Dahlquist (1969)'and Oden (1971)).

For the F-8 aircraft model, we have the two "slow" (i.e., small in
-2

magnitude) eigenvalues sl,2 = (-0.75 ± i7.6) x 10 compared to the two

"fast" (i.e., large) eigenvalues f1 = -0.94 ± i3.0. The smallness of• "' ,2- " "

the parameter p = 1s2/fl1 
= 0.024 indicates a large time-scale separa-

tion between slow and fast modes, and the smallness of E = -(l/Re f1)/T

= 1.06/T for a long enough time interval 0 < t < T provides fast-mode

stability and a rapid transition to pseudo-steady state behavior. We

shall determine a second-order nonstiff model for the solution away

from t = 0. A basic question is what initial values should be used for

the second-order problem. (The need to "project" the initial vector

occurs in many related situations (cf. O'Malley and Flaherty (1980),

Lentini and Keller (1980), and de Hoog and Weiss (1979))). Our

approximation, based on asymptotic methods, will improve as the para-

meters E and P both tend toward zero. In practice, however, there is

often a need to use such reduced-order methods even when these para-

meters are only moderately small. In contrast, our related suggestion

of "equilibrating" the primarily fast states will produce an error

which persists for all t > 0 (cf. Figure 1).

In the applications of interest, very high dimensional systems are

common. We shall seek approximate nonstiff models of (differential)

order n1 << n, the dimension of x, where n1 is the number of "slow", or

small in magnitude, eigenvalues of A compared to its other (large)

eigenvalues. Systems, for which the eigenvalues of the state matrix A

can be so divided, will be called two-time-scale. Finer subdivisions

of eigenvalues into slow, fast, and very fast categories could be

treated by repeating our procedure. For our initial value problems,

* we'll also assume fast-mode-stability, i.e. that the n2 = n - nI large

eigenvalues of A also iave large negative real parts. We are thereby

eliminating consideration of systems with large, purely imaginary
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FIGURE 1. F-8 aircraft model: Angle of attack
(a fast variable) vs. time.

eigenvalues. Their rapidly oscillatory solutions require techniques

(cf. Miranker and Wahba (1976) or Petzold (1978)) much different from

the boundary-layer method we wish to develop.

One moderate-size problem we've solved is a recently popular

contest problem in the control literature (cf. Sain (1977) and De Hoff

and Hall (1979)). It is a sixteenth order model for a turbofan engine.

Indeed, it is one of thirty six different linearizations used to

simulate the engine. The sixteen eigenvalues of A are all stable and

have magnitudes ranging from 0.65 to 577. Their distribution suggests

using either a third or a fifth order reduced model. we obtained very

good approximations in both cases for t > 10E, with e being determined

in terms of the decay rate of the smallest large eigenvalue (cf.

O'Malley and Anderson (1980)).

To proceed, let us transform the constant coefficient problem

= Ax + Bu (i)

into a new problem

y = Ay + Bu , (2)

where the fast and slow modes of the homogeneous problem are decoupled.

= ' " -.. . ,' . .. 2 ' !
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Specifically, let

y = Tx , (3)

where

= TAT- --

and

B=7

for

T In 0 1  K

1 2n=2

Here, A11 shall have the nI small eigenvalues of A and A22 its n 2
(relatively) large eigenvalues (with large negative real parts as well).

We note that

T-1 T2 1T7= (5)

2-L I n + LKJ

-l n~ 1 Patiioin A 11~l A 12
since, e.g., = Partitioning A A2 A2 2j compatibly,

A A A1 A
11 111 1 12T T A221 A LA 2 J (6)

provided the n2 x nI matrix L satisfies the algebraic Riccati equation

LA - A22 L - LAI2 L + A21 = 0 (7)

(The connection to invariant imbedding is signaled by the entrance of a

Riccati equation.) This matrix quadratic equation will have many

solutions, but only one which decouples the fast modes of the homo-

geneous problem, as in (6). Indeed, if the spectrum of A11 coincides

with the slow eigenvalues X , i = l,...,n 1 , of A, i.e. if

X(A11  N X\ (8)

it is easy to show that

L = - (9)



where the n x nl matrix 2 spans the n1 dimensional slow eigenspace

of A (we rearrange the rows of A, if necessary, so that M is

invertible) (cf. Anderson (1978), Medanic (1979), and van Dooren (1980)

(which develops numerically stable computational methods)). Rather

than compute this eigenspace, we prefer to iterate in a rearranged

version of the Riccati equation (7) and obtain L as the limit of

iterates
-1

i+1 != (A2 2 + LiA 12) (LiAll + A .21 (10)

Not unexpectedly, this procedure relates closely to Stewart (1975)'s

method of finding the dominant eigenspace of A. The iteration can be

shown to be robust with respect to its initialization, and its rate of

convergence is proportional to the time-scale separation parameter ui,

i.e. the ratio of the largest slow eigenvalue in magnitude to the

smallest fast eigenvalue in magnitude.

Using the L so obtained, we will next block diagonalize the A of

(2) provided the nx n2 matrix K satisfies the linear (Liapunov)

equation

KA22 - A11 K + A12 0

Since All and A22 have no eigenvalues in common, the linear system has

a unique solution (cf., e.g., Bellman (1970)) which can be found as the

limit of the iteration

(AK Kj - A (12)Kj+l 1 22

Again, the procedure has a rate of convergence proportional to .

Having now determined the transforming matrix T of (4), there

remains a decoupled system

l= llyl - 5lu (13)

and

Y2= 2 2Y 2 
+ B2u ' (14)

' rYl

where y Tx 1 for y. = T.x and B. = B for T (I + KL K) and
(Y2) ii 1 n1

and T = (L In). We note that this decoupling procedure has used the

the two-time-scale hypothesis, but not the hypothesis requiring fast-

mode stability.

...



Since we've assumed that the eigenvalues of A2 2 lie far into the

left half plane, we can expect Y2 to decay rapidly to its steady-state

B-1- (15)y2s 22 2is

(presuming u doesn't vary rapidly). A good approximation to y away

from t = 0 will then follow by simply integrating the nonstiff system

of differential equations (3) of order n1 with initial vector Yl(0) =

r1x(0). Returning to the original variables, we will obtain the slow-

mode approximation
Xs~) =r-lyl(t)

s(t) - 7-11 (16){ y2s()
It is generally a poor approximation near t = 0 because the "boundary

layer correction" y2f E Y2 - Y2s is neglected. If a better approxima-

tion is needed there, one can integrate the linear system

Y2f = A2 2y2 f + y2s with y2 f(0) = t2x(O) - Y2s(0). Because the eigen-

values of A2 2 are large and (very) stable, we will need to use a short

stepsize only on a short initial interval, since Y2f should rapidly

decay to zero. This would fail to be true only if y2s were not slowly-

varying (i.e., y2s were not small) for t > 0.

A more substantial problem results for initial value problems for

the time-varying system

= A(t)x + B(t)u(t) (17)

on 0 < t < T. Assuming A(O) is two-time scale with n1 slow modes, we

can seek a transformation 7, as in (4), but now with time-varying

* decoupling matrices L(t) and K(t) determined so that the transformed

problem for

y = T(t)x (18)

remains two-time-scale and fast-mode stable with the same fixed number

n of (relatively) small eigenvalues throughout 0 < t < T.

we must cautiously note that eigenvalue stability does not imply

stability for time-varying systems (cf., e.g., Coppel (1978)), but this

is nearly true for certain singularly perturbed systems satisfying

appropriate stability hypotheses (cf. the statement of Tikhonov's

theorem in Wasow (1965) or Vasil'eva and Butuzov (1973)). Kreiss

(1978, 1979) exhibits counterexamples, however, for systems with non-

smooth coefficients.



Using our transformation (4), L(t) will block-triangularize the

system matrix A(t) provided it now satisfies the matrix Riccati
differential equation

L = -LA 11(t) + A2 2 (t)L + LA1 2 (t)L - A2 1 (t) . (19)

If L(O) = 0, the transformation T1 (0) will be a similarity transforma-

tion, and we can ask (as before) that the eigenvalues of A11 (0) =

A11 (0) - A1 2 (0)L(O) coincide with the n1 slow eigenvalues of AM0). The

initial matrix L(0) can then be obtained, as before, by iterating in

the algebraic Riccati equation L(0) = 0. We will then obtain L(t) on

0 < t < T by integrating the resulting initial value problem. We would

stop the integration and abandon our procedure if we encountered a

finite escape time, or if the transformed problem ceased to be two-

time-scale and fast-mode-stable within our t interval. (Existence

criteria for the symmetric matrix Riccati equation commonly encountered

in control theory are known, but analogous criteria for the non-square

problem do not seem to be available.) The possibility for intermittent

reinitialization should be investigated, corresponding to the reortho-

normalizations of Scott and watts (1977).

Knowing an appropriate L(t), the matrix K(t) will produce a block-

diagonalization of the state matrix provided it satisfies the linear

differential system

K = (t)K - KA 2 2 (t) - A1 2 (t) (20)

Since fast-mode stability implies that the eigenvalues of A22 =

A22 + :A12 have large negative real parts, singular perturbation

concepts (cf., e.g., O'Malley (.974)) suggest that the solution of the

initial value problem for K, like that for cz = z, will blow up for

t > 0. Instead, it is natural to integrate a terminal value problem

for K and expect that an asymptotically valid approximation will result

by using its "pseudo-steady state" approximation, i.e. the unique

solution of the algebraic system

~--I
K t) = (t)(t)Ks(t) - A1 2 (t))A22t) (21)

The need for nonuniform convergence at terminal time will be eliminated
by picking K(T) = 0, i.e. K(T) = K s(T).

Since the homogeneous variational equation for L(t),

-A1 1Z A22, is also "singularly perturbed", but opposite in

stability to the system for K, we might also attempt to approximate

L(t) for t > 0 as a smooth solution L(t) of the algebraic Riccati



equation L(t) = 0. This would certainly need L(t) to be slowly-varying

with the eigenvalues of A22 + LA12 remaining large, and far into the

left half-plane, compared to those of A11 - A1 2L. Otherwise, we need

to actually integrate the full initial value problem for L(t).

Now note that the fast-mode stability of A2 2 (t) implies that the

slow-mode or pseudo-steady state approximation
y2 s(t) = - (t) c-t u (22)

should nicely approximate Y2 for t > 0, provided Y2 s remains slowly-

varying. Thus, we are finally left with the need to integrate the non-

stiff reduced-order system (13) for yl(t). By inverting our transfor-

mation, as in (16), we find a slow-mode approximate x5 (t) for t > 0.

Note that all initial value problems for x(t) would be solved in

terms of an n x n fundamental matrix X(t) for the homogeneous system.

In the two-time scale situation, our problem splits into four separate

problems for the n 2 x n1 matrix L(t), for the n1 1 n2 matrix K(t), for

the n2 x n1 fundamental matrix for Y2 (t), and the n, x n, fundamental

matrix for yl(t). With the fast-mode stability assumption, pseudo-

steady state approximations can be used to eliminate the differential

systems for K, Y2, and sometimes L. Thus, a substantial order reduction

is achieved for the t > 0 approximation.

Substantially more detail regarding time-varying problems is

contained in O'Malley and Anderson (1980). Various related problems

might be treated similarly. If, for example, a two-time-scale system

produced a matrix A22 with only moderate-sized eigenvalues, one might

consider y1 to be approximately constant on finite T intervals, so that

only a differential system for Y2 need be integrated. Likewise, if the

eigenvalues of A22 are large with both large negative and large posi-

tive real parts, one might seek reduced-order approximations for

appropriate two-point problems. Finally, extensions of these ideas to

nonlinear problems must be sought.
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